题目内容

【题目】已知:在矩形ABCD中,AB=8,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.
(1)如图1,当四边形EFGH为正方形时,求△GFC的面积;
(2)如图2,当四边形EFGH为菱形时,设BF=x,△GFC的面积为S,求S关于x的函数关系式,并写出函数的定义域.

【答案】
(1)解:如图1,过点G作GM⊥BC,垂足为M.

由矩形ABCD可知:∠A=∠B=90°,

由正方形EFGH可知:

∠HEF=90°,EH=EF,

∴∠1+∠2=90°,

又∠1+∠3=90°,

∴∠3=∠2,

∴△AEH≌△BFE.

∴BF=AE=2,

同理可证:△MGF≌△BFE,

∴△MGF≌△AEH,

∴GM=AE=2,

又 FC=BC﹣BF=12﹣2=10,

∴SGFC= FCGM= ×10×2=10.


(2)解:如图2,过点G作GM⊥BC,垂足为M,连接HF.

由矩形ABCD得:AD∥BC,

∴∠AHF=∠HFM,

由菱形EFGH得:EH∥FG,EH=FG,

∴∠1=∠2,

∴∠3=∠4,

又∠A=∠M=90°,EH=FG,

∴△MGF≌△AEH,

∴GM=AE=2,

又 BF=x,∴FC=12﹣x,

∴SGFC= FCGM= (12﹣x)2=12﹣x,

即:S=12﹣x,

定义域:


【解析】(1)只要证明△AEH≌△BFE.推出BF=AE=2,由△MGF≌△BFE,推出△MGF≌△AEH,求出FC、GM即可解决问题.(2)如图2,过点G作GM⊥BC,垂足为M,连接HF,根据SGFC= FCGM,计算即可.
【考点精析】本题主要考查了菱形的性质和矩形的性质的相关知识点,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网