题目内容
【题目】如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.
(1)当点E在线段DC上时,求证:△BAE≌△BCG;
(2)在(1)的条件下,若CE=2,求CG的长;
(3)连接CF,当△CFG为等腰三角形时,求DE的长.
【答案】(1)证明见解析;(2)CG=10;(3)当△CFG为等腰三角形时,DE的长为4或8或16.
【解析】
(1)由正方形的性质得出,AB=BC,BE=BG,∠ABC=∠EBG=90°,易证∠ABE=∠CBG,由SAS证得△BAE≌△BCG;
(2)由△BAE≌△BCG,得出AE=CG,DE=CDCE=6,由勾股定理得出,即可得出结果;
(3)①当CG=FG时,易证AE=BE,由HL证得Rt△ADE≌Rt△BCE,得出DE=CE= DC=4;
②当CF=FG时,点E与点C重合,DE=CD=8;
③当CF=CG时,点E与点D重合时,DE=0;
④当CF=CG,点E在DC延长线上时,DE=16.
(1)证明∵四边形ABCD和四边形BEFG都是正方形,
∴AB=BC,BE=BG,∠ABC=∠EBG=90°,
∴∠ABC﹣∠EBC=∠EBG﹣∠EBC,即∠ABE=∠CBG,
在△BAE和△BCG中,,
∴△BAE≌△BCG(SAS);
(2)解:∵△BAE≌△BCG,
∴AE=CG.
∵四边形ABCD正方形,
∴AB=AD=CD=8,∠D=90°,
∴DE=CD﹣CE=8﹣2=6,
∴AE10,
∴CG=10;
(3)解:①当CG=FG时,如图1所示:
∵△BAE≌△BCG,
∴AE=CG.
∵四边形BEFG是正方形,
∴FG=BE,
∴AE=BE,
在Rt△ADE和Rt△BCE中,,
∴Rt△ADE≌Rt△BCE(HL),
∴DE=CEDC
8=4;
②当CF=FG时,如图2所示:
点E与点C重合,即正方形ABCD和正方形BEFG的一条边重合,DE=CD=8;
③当CF=CG时,如图3所示:
点E与点D重合,DE=0;
∵点E与点D不重合,
∴不存在这种情况;
④CF=CG,当点E在DC延长线上时,如图4所示:
DE=CD+CE=16;
综上所述:当△CFG为等腰三角形时,DE的长为4或8或16.
![](http://thumb.zyjl.cn/images/loading.gif)