题目内容
【题目】如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.
(1)求证:AB是⊙O的直径;
(2)判断DE与⊙O的位置关系,并加以证明;
(3)若⊙O的半径为3,∠BAC=60°,求DE的长.
【答案】(1)证明见解析;(2)DE与圆O相切;(3).
【解析】
试题分析:(1)连接AD,由AB=AC,BD=CD,利用等腰三角形三线合一性质得到AD⊥BC,利用90°的圆周角所对的弦为直径即可得证;
(2)DE与圆O相切,理由为:连接OD,由O、D分别为AB、CB中点,利用中位线定理得到OD与AC平行,利用两直线平行内错角相等得到∠ODE为直角,再由OD为半径,即可得证;
(3)由AB=AC,且∠BAC=60°,得到三角形ABC为等边三角形,连接BF,DE为三角形CBF中位线,求出BF的长,即可确定出DE的长.
试题解析:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径;
(2)DE与圆O相切,理由为:
连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;
(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得:BF==
,则DE=
BF=
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目