题目内容
【题目】正方形网格中的交点,我们称之为格点.如图所示的网格图中,每个小正方形的边长都为.现有格点,那么,在网格图中找出格点,使以和格点为顶点的三角形的面积为.这样的点可找到的个数为( )
A.B.C.D.
【答案】C
【解析】
因为每个小正方形的边长是1,则可以先找到一点C,则三角形ABC的面积是2,满足题目要求,再过C点作AB的平行线,平行线与网格点重合的点,因这些点与A、B组成的三角形都是同底等高,则这些三角形的面积都是2,所以这些点即为符合要求的点;同理,过D点作AB的平行线,与网格点重合的点也是符合要求的格点.将所有的符合要求的格点数加起来,就是问题的答案.
解:如图所示,在网格图中可以找到点C,
则三角形ABC的面积是2,再过C点作AB的平行线,平行线与网格点重合的点即为符合要求的点,这样的点有5个;
同样的方法,过D点作AB的平行线,又能得到4个不同符合要求的格点,
所以符合要求的格点共有:5+4=9(个);
故选:C.
练习册系列答案
相关题目