题目内容

精英家教网如图,?ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=
12
CD.
(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求?ABCD的面积.
分析:(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB∥CD,可得一对内错角相等,则可证.
(2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出?ABCD的面积.
解答:(1)证明:∵四边形ABCD是平行四边形
∴∠A=∠C,AB∥CD
∴∠ABF=∠CEB
∴△ABF∽△CEB

(2)解:∵四边形ABCD是平行四边形
∴AD∥BC,AB平行且等于CD
∴△DEF∽△CEB,△DEF∽△ABF
∵DE=
1
2
CD
S△DEF
S△CEB
=(
DE
EC
)2=
1
9
S△DEF
S△ABF
=(
DE
AB
)2=
1
4

∵S△DEF=2
S△CEB=18,S△ABF=8,
∴S四边形BCDF=S△BCE-S△DEF=16
∴S四边形ABCD=S四边形BCDF+S△ABF=16+8=24.
点评:本题考查了平行四边形的性质、相似三角形的判定和性质等知识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网