题目内容
【题目】如图,四边形ACBE内接于⊙O,AB平分∠CAE,CD⊥AB交AB、AE分别于点H、D.
(1)如图①,求证:BD=BE;
(2)如图②,若F是弧AC的中点,连接BF,交CD于点M,∠CMF=2∠CBF,连接FO、OC,求∠FOC的度数;
(3)在(2)的条件下,连接OD,若BC=4 ,OD=7,求BF的长.
【答案】(1)详见解析;(2)∠FOC=60°;(3)BF=13.
【解析】
试题分析:(1)如图1,连接半径OB、OC、OE,由角平分线得:∠CAB=∠BAE,在同圆或等圆中,圆周角相等,则所对的圆心角也相等,得∠COB=∠BOE,所以所对的弦相等:BC=BE,证明△ACH≌△ADH,AB为线段CD的垂直平分线,得BC=BD,则BD=BE;(2)由弧相等,所对的圆周角相等得:∠CBF=∠ABF,由已知中的∠CMF=2∠CBF,得∠BMH=2∠ABF,求得∠CBF=30°,所以∠FOC=2∠CBF=60°;(3)如图3,连接OM,OB,作ON⊥BF于N,DK⊥OM于K,由(2)中的30°和BC=4 分别求出:BH=2,CH=6,BM=4 HM=2,再证明△OMC≌△OMB,得∠CMO=∠BMO=120°,∠OMF=∠OMD=60°,由DM=8可以求MK和DK的长,由勾股定理列式求OK=1,OM=5,求出BN的长,利用垂径定理可得结论:BF=2BN=13.
试题解析:(1)如图1,连接OB、OC、OE,
∵AB平分∠CAE,
∴∠CAB=∠BAE,
∴∠COB=∠BOE,
∴BC=BE,
∵CD⊥AB,
∴∠CHA=∠DHA=90°,
∵∠CAB=∠BAE,AH=AH,
∴△ACH≌△ADH,
∴CH=DH,
∴AB为线段CD的垂直平分线,
∴BC=BD,
∴BD=BE;
(2)∵F是弧AC的中点,
∴ ,
∴∠CBF=∠ABF,
∵∠CMF=2∠CBF,
∴∠CMF=2∠ABF,
∵CD⊥AB,∠CMF=∠BMH,
∴∠BMH+∠ABF=90°,
∴∠ABF=30°,
∴∠CBF=30°,
∵∠FOC=2∠CBF,
∴∠FOC=60°;
(3)如图3,连接OM,OB,作ON⊥BF于N,DK⊥OM于K,
由(2)可知:∠CBF=∠ABF=∠BCH=30°,
∴CM=BM,
在Rt△CBH中,∠BCH=30°,BC=4,
∴BH=2,CH=6,
在Rt△BHM中,∠MBH=30°,BH=2,
∴BM=4 HM=2,
∴CM=BM=4,
∵OC=OB,OM=OM,
∴△OMC≌△OMB,
∴∠CMO=∠BMO=120°,∠OMF=∠OMD=60°,
∵CH=DH=6,
∴DM=8,
在Rt△DMK中,∠KMD=60°,DM=8,
∴MK=4,DK=4,
在Rt△OKD中,
OD2=OK2+DK2,
∵OD=7,DK=4,
∴OK=1,
∴OM=5,
在Rt△OMN中,∠OMN=60°,OM=5,
MN=OM=,
∴BN=BM+MN=,
∵ON⊥BF,
∴BF=2BN=13.