题目内容
【题目】已知在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=4,OC=7,则另一条直角边BC的长为_____.
【答案】
【解析】
过O作OF⊥BC,过O作OM⊥AC,根据正方形的性质得出∠AOB=90°,OA=OB,求出∠BOF=∠AOM,根据AAS证△AOM≌△BOF,推出AM=BF,OM=FO,求出四边形CMOF为矩形,得出等腰直角三角形OCF,根据勾股定理求出CF=OF的长,求出BF,即可求出答案.
过O作OF⊥CB,交CB的延长线于F,过O作OM⊥AC于M,
∵∠ACB=90°,
∴∠BCM=∠OFB=∠CMO=90°,
∴四边形CMOF是矩形,
∴OM=CF,CM=OF,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOM=90°,
又∵∠FOM=90°,
∴∠BOF+∠BOM=90°,
∴∠BOF=∠AOM,
在△AOM和△OBF中
∴△AOM≌△BOF(AAS),
∴AM=BF,OM=OF,
∴OF=CF,
∵∠CFO=90°,
∴△CFO是等腰直角三角形,
∵OC=7,
由勾股定理得:CF=OF=,
∴BF=AM=AC﹣CM=AC﹣OF=﹣=,
∴BC=﹣=3.
故答案为:3.
练习册系列答案
相关题目