题目内容
【题目】已知抛物线y=(m-1)x2+m2-2m-2的图象开口向下,且经过点(0,1).
(1)求m的值;
(2)求此抛物线的顶点坐标及对称轴;
(3)当x为何值时,y随x的增大而增大?
【答案】(1) m=-1;(2) (3) 见解析
【解析】试题分析:开口向下说明m-1<0,将(0,1)代入函数表达式可求出m的值;函数表达式为y=-2x2+1,可求得对称轴是y轴,顶点坐标是(0,1);开口向下,对称轴是y轴,所以在y轴左侧,y随x的增大而增大。
解:(1)由题意,得,
解得m=-1.
(2)当m=-1时,抛物线的表达式为y=-2x2+1,其顶点坐标为(0,1),对称轴为y轴.
(3)因为抛物线y=-2x2+1的开口向下,所以在对称轴的左侧,即当x<0时,y随x的增大而增大.
练习册系列答案
相关题目
【题目】某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如下不完整的统计表.
课外阅读时间t | 频数 | 百分比 |
10≤t<30 | 4 | 8% |
30≤t<50 | 8 | 16% |
50≤t<70 | a | 40% |
70≤t<90 | 16 | b |
90≤t<110 | 2 | 4% |
合计 | 50 | 100% |
请根据图表中提供的信息回答下列问题:
(1)a= ,b= ;
(2)将频数分布直方图补充完整;
(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不少于50min?