题目内容

【题目】如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.

(1)填空:∠BAD与∠ACB的数量关系为
(2)求 的值;
(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD= ,求PC的长.

【答案】
(1)∠BAD+∠ACB=180°
(2)

解:如图1中,作DE∥AB交AC于E.

∴∠DEA=∠BAE,∠OBA=∠ODE,

∵OB=OD,

∴△OAB≌△OED,

∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,

∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,

∴∠EDA=∠ACB,

∵∠DEA=∠CAB,

∴△EAD∽△ABC,

= = =

=

∴4y2+2xy﹣x2=0,

∴( 2+ ﹣1=0,

= (负根已经舍弃),

=


(3)

解:如图2中,作DE∥AB交AC于E.

由(1)可知,DE=CE,∠DCA=∠DCA′,

∴∠EDC=∠ECD=∠DCA′,

∴DE∥CA′∥AB,

∴∠ABC+∠A′CB=180°,

∵△EAD∽△ACB,

∴∠DAE=∠ABC=∠DA′C,

∴∠DA′C+∠A′CB=180°,

∴A′D∥BC,

∴△PA′D∽△PBC,

= =

= ,即 =

∵CD=

∴PC=1.


【解析】解:(1.)如图1中,

在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,
又∵∠ABD+∠ADB=∠ACB,
∴∠BAD+∠ACB=180°,
所以答案是∠BAD+∠ACB=180°.
【考点精析】根据题目的已知条件,利用相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网