题目内容
【题目】如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙两种作法:
甲:分别作∠ACP、∠BCP的平分线,分别交AB于D、E,则D、E即为所求;
乙:分别作AC、BC的垂直平分线,分别交AB于D、E,则D、E两点即为所求.
下列说法正确的是( )
A.甲、乙都正确
B.甲、乙都错误
C.甲正确,乙错误
D.甲错误,乙正确
【答案】D
【解析】甲:虽然CP= AP,但∠A≠∠ACP,
即∠A≠∠ACD.甲不正确;
乙∵CP是线段AB的中垂线,
∴△ABC是等腰三角形,即AC=BC,∠A=∠B,
作AC、BC之中垂线分别交AB于D、E,
∴∠A=∠ACD,∠B=∠BCE,
∵∠A=∠B,
∴∠A=∠ACD,∠B=∠BCE,
∵AC=BC,
∴△ACD≌△BCE,
∴AD=EB,
∵AD=DC,EB=CE,
∴AD=DC=EB=CE,乙正确,
故答案为:D
根据与线段的两个端点的距离相等的点,在线段的垂直平分线上;由线段垂直平分线上的点与线段的两个端点的距离相等,线段AB的垂直平分线CP得到AC=BC,得到结论.
练习册系列答案
相关题目