题目内容
【题目】综合与探究:如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠ABN、∠CBD的度数;根据下列求解过程填空.
解:∵AM∥BN,
∴∠ABN+∠A=180°
∵∠A=60°,
∴∠ABN= ,
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP、∠PBN= ,( )
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP= .
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.
【答案】(1)120°,2∠PBD,角平分线的定义,60°(2)∠APB=2∠ADB.不随点P运动变化,见解析;(3)30°
【解析】
(1)由AM∥BN,∠A=60°可得∠ABP+∠PBN=120°,再根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=120°,即∠CBD=∠CBP+∠DBP=60°;
(2)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB=2∠ADB;
(3)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据∠ABN=120°,∠CBD=60°可得答案.
解:
(1)∵AM∥BN,
∴∠ABN+∠A=180°,
∵∠A=60°,
∴∠ABN=120°
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP、∠PBN=2∠PBD,(角平分线的定义),
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP=60°.
故答案为120°,2∠PBD,角平分线的定义,60°.
(2)∠APB与∠ADB之间数量关系是:∠APB=2∠ADB.不随点P运动变化.
理由是:∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN(两直线平行内错角相等),
∵BD平分∠PBN(已知),
∴∠PBN=2∠DBN(角平分线的定义),
∴∠APB=∠PBN═2∠DBN=2∠ADB(等量代换),
即∠APB=2∠ADB.
(3)结论:∠ABC=30°.
理由:∵AM∥BN,∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
由(1)可知∠ABN=120°,∠CBD=60°,
∴∠ABC+∠DBN=60°,
∴∠ABC=30°