题目内容
【题目】如图,六边形ABCDEF的内角都相等,CF∥AB.
(1)求∠FCD的度数;
(2)求证:AF∥CD.
【答案】(1)60°(2)证明见解析
【解析】试题分析:(1)先求六边形ABCDEF的每个内角的度数,根据平行线的性质可求∠B+∠BCF=180°,再根据四边形的内角和是360°,求∠FCD的度数,从而求解.
(2)先根据四边形内角和求出∠AFC=60°,再根据平行线的判定即可求解.
试题解析:(1)解:∵六边形ABCDEF的内角相等,∴∠B=∠A=∠BCD=120°.
∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=60°,∴∠FCD=60°.
(2)证明:∵CF∥AB,∴∠A+∠AFC=180°,∴∠AFC=180°-120°=60°,∴∠AFC=∠FCD,∴AF∥CD.
练习册系列答案
相关题目