题目内容
如图,在正方形ABCD中,E是边CD上一点,交CB的延长线于点F,联结DF,分别交AE、AB于点G、P.
(1)求证:AE=AF;
(2)若∠BAF=∠BFD,求证:四边形APED是矩形.
(1)见解析;(2)见解析
【解析】
试题分析:
(1)若要证明AE=AF,则可证明以上两条线段所在的三角形全等即可;
(2)利用正方形的性质以及垂直定义得出∠1=∠3=∠4=∠5,进而利用全等三角形的判定与性质得出AP=DE,进而利用平行四边形的判定以及矩形的判定得出即可.
试题解析:
证明:(1)∵四边形ABCD是正方形,
∴∠ADE=∠ABC=∠DAB=90°,AD=AB,AD∥BC,AB∥CD,
∵AF⊥AE,
∴∠EAF=90°,
∴∠DAE=∠BAF,
在△ADE和△ABF中,
∠DAE=∠BAF ,AD=AB ,∠ADE=∠ABF=90°,
∴△ADE≌△ABF(ASA),
∴AF=AE;
(2)∵AF⊥AE,
∴∠1+∠2=90°,
∵∠2+∠3=90°,
∴∠1=∠3,
∵AD∥FC,
∴∠4=∠5,
∵∠1=∠5,
∴∠1=∠3=∠4=∠5,
在△ADE和△DAP中,
∠3=∠4 ,AD=AD ,∠ADE=∠DAP ,
∴△ADE≌△DAP(ASA),
∴AP=DE,
又∵AP∥DE,
∴四边形APED是平行四边形,
∵∠PAD=90°,
∴平行四边形APED是矩形.
考点:正方形的性质;全等三角形的判定与性质;矩形的判定.
练习册系列答案
相关题目