题目内容

【题目】顺次连结对角线相等的四边形的四边中点所得图形是( )
A.正方形
B.矩形
C.菱形
D.以上都不对

【答案】C
【解析】如图:已知四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,AC=BD,
连接AC、BD,
∵E、F、G、H分别是边AB、BC、CD、DA的中点,
∴EF=AC,GH=AC,GF=BD,EH=BD,
又∵AC=BD,
∴EF=GH=GF=EH,
∴四边形EFGH是菱形.
所以答案是:C.

【考点精析】解答此题的关键在于理解三角形中位线定理的相关知识,掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半,以及对菱形的判定方法的理解,了解任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网