题目内容
【题目】如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,则折痕AE的长为( )
A.cmB. cmC.12cmD.13 cm
【答案】A
【解析】
先根据图形翻折变换的性质得出AF=AD=10cm,在Rt△ABF中利用勾股定理求出BF的长,进而得出CF的长,设DE=x,则EF=DE=x,CE=8-x,在Rt△CEF中由勾股定理可求出x的值,同理在Rt△ADE中利用勾股定理可求出AE的长.
∵△AEF由△AED翻折而成,
∴AF=AD=10cm,∠AFE=∠D=90°,DE=EF,
∴Rt△ABF中,
BF==6cm,
∴CF=BC-BF=10-6=4cm,
设DE=x,EF=x,EC=8-x.
在Rt△ECF中,
CE2+CF2=EF2,即,(8-x)2+42=x2,
解得x=5cm,即DE=5cm,
再在△ADE中,
AE=cm.
故选A.
练习册系列答案
相关题目
【题目】某电器超市销售每台进价分别为190元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1770元 |
第二周 | 4台 | 10台 | 3060 元 |
(进价、售价均保持不变,利润=销售收入一进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5300元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.