题目内容
【题目】某电器超市销售每台进价分别为190元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1770元 |
第二周 | 4台 | 10台 | 3060 元 |
(进价、售价均保持不变,利润=销售收入一进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5300元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.
【答案】(1)A、B两种型号电风扇的销售单价分别为240元、210元;(2)超市最多采购A种型号电风扇10台时,采购金额不多于5300元;(3)在(2)的条件下超市不能实现利润1400元的目标,理由见详解.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1770元,4台A型号10台B型号的电扇收入3060元,列方程组求解;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5300元,列不等式求解;
(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,
依题意得:,
解得:.
答:A、B两种型号电风扇的销售单价分别为240元、210元;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.
依题意得:190a+170(30﹣a)≤5300,
解得:a≤10.
答:超市最多采购A种型号电风扇10台时,采购金额不多于5300元;
(3)依题意有:(240﹣190)a+(210﹣170)(30﹣a)=1400,
解得:a=20,
∵a≤10,
∴在(2)的条件下超市不能实现利润1400元的目标.
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?