题目内容

【题目】如图,已知DB⊥AN于B,交AE于点O,OC⊥AM于点C,且OB=OC,若∠OAB=25°,求∠ADB的度数.

【答案】解:∵DB⊥AN于B,OC⊥AM于点C,且OB=OC,
∴AE平分∠MAN,
∵∠OAB=25°,
∴∠MAN=50°,
∵DB⊥AN于B,
∴Rt△ABD中,∠ADB=40°.

【解析】先根据DB⊥AN于B,OC⊥AM于点C,且OB=OC,得出AE平分∠MAN,再根据∠OAB=25°,得出∠MAN=50°,最后根据DB⊥AN于B,求得∠ADB即可.
【考点精析】本题主要考查了角的平分线和角平分线的性质定理的相关知识点,需要掌握从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网