题目内容

【题目】如图,已知扇形中,,弦,点是弧上任意一点(与端点不重合),于点,以点为圆心、长为半径作,分别过点的切线,两切线相交于点

求弧的长;

试判断的大小是否随点的运动而改变?若不变,请求出的大小;若改变,请说明理由.

【答案】的大小不变,为

【解析】

(1)过点OOHABH,则AH=AB=,根据弧长公式求出结果;

(2)连接AMBM,根据切线的判定和性质定理推出MABC的内切圆,得到AMBMCAB、∠ABC的平分线,求出AMB=90°+ACB,由已知条件AOB=120,可求得AMB=120°,得到ACB=60°,求出结果.

过点

易求

的长

连接

的切线,

的切线,

的内切圆,

的平分线,

的大小不变,为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网