题目内容

【题目】已知,正方形ABPD的边长为3,将边DP绕点P顺时针旋转90°PC,E、F分别为线段DP、CP上两个动点(不与D、P、C重合),且DE=CF,连接BE并延长分别交DF、DCH、G.

(1)①求证:△BPE≌△DPF,②判断BGDF位置关系并说明理由;

(2)当PE的长度为多少时,四边形DEFG为菱形并说明理由;

(3)连接AH,在点E、F运动的过程中,∠AHB的大小是否发生改变?若改变,请说出是如何变化的;若不改变,请求出∠AHB的度数.

【答案】(1)①见解析,②BGDF;(2)PE=3﹣3时,四边形DEFG为菱形;

(3)45°.

【解析】分析:

(1)①由已知条件易得BP=DP=PC,∠BPE=∠DPF=90°结合DE=CF可得PE=PF,由此即可得到△BPE≌△DPF;②△BPE≌△DPF可得∠EBP=∠FDP,结合∠FDP+∠BFH=90°,可得∠EBP+∠BFH=90°,从而可得∠BHP=90°,由此可得BG⊥DF;

(2)如下图1,连接EF、GF,由题意可知,要使四边形DEFG是菱形,则必须使DE=EF,由(1)中所得△BPE≌△DPF可得PF=PE,设PE=x,DE=3-x=EF,由此在Rt△PEF中由勾股定理建立方程,解方程即可求得此时PE=x=解题时把PE=作为一个条件结合题目中的其它条件去证明此时四边形DEFG为菱形即可;

(3)如图2,连接BD,作出BD的中点O,连接AO,HO,由已知条件结合(1)中所得BG⊥DF易得OA=OB=OD=OH=BD,由此可得点A、B、H、D在以O为圆心、OA为半径的圆上,从而可得∠AHB=∠ADB=45°.

详解

(1)①证明:由旋转的性质可知,△DPC是等腰直角三角形,

四边形ABPD是正方形,

∴BP=PD=PC,∠BPE=∠DPF=90°,

∵DE=CF,

∴PE=PF,

△BPE△DPF中,

BP=PD,∠BPE=∠DPF,PE=PF,

∴△BPE≌△DPF;

②∵△BPE≌△DPF,

∴∠EBP=∠FDP,又∠FDP+∠BFH=90°,

∴∠EBP+∠BFH=90°,

∴∠BHP=90°,

∴BG⊥DF;

(2)当PE=时,四边形DEFG为菱形;理由如下:

在正方形ABPD中,BP=PD=3,

∵PE=,EF=PE,

EF==6﹣3DE=PD-PE=6﹣3

∴EF=ED,

∵BG⊥DF,

∴EG垂直平分DF,

∴GD=GF,

∵∠PEF=∠PDC=45°,

∴EF∥DG,

∴∠EFD=∠FDG,

∵DE=EF,

∴∠EFD=∠EDF,

∴∠EDG=∠FDE,

∵BG⊥DF,

∴∠DEG=∠DGE,

∴DE=DG,

∴DE=DG=GF=EF,

四边形DEFG是菱形;

(3)∠AHB的大小不变,∠AHB=45°,

连接BD,取BD的中点O,连接OA、OH,

四边形ABCD是正方形,

∴∠BAD=90°,∠ADB=45°,

∵BG⊥DF,

∴∠DHB=90°,

OA=OB=OD=OH=BD,

A、B、H、D在以O为圆心、OA为半径的圆上,

∴∠AHB=∠ADB=45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网