题目内容

【题目】如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.

(1)直接写出直线AB的解析式;
(2)求点D的坐标;
(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:设直线AB的解析式为y=kx+b,将A(0,4),B(4,0)两点坐标代入,

,解得 ,所以,直线AB的解析式为y=﹣x+4;


(2)

解:过D点作DG⊥y轴,垂足为G,

∵OA=OB=4,

∴△OAB为等腰直角三角形,

又∵AD⊥AB,

∴∠DAG=90°﹣∠OAB=45°,即△ADG为等腰直角三角形,

∴DG=AG=OG﹣OA=DM﹣OA=6﹣4=2,

∴D(2,6);


(3)

解:存在.

由抛物线过O(0,0),B(4,0)两点,设抛物线解析式为y=ax(x﹣4),

将D(2,6)代入,得a=﹣ ,所以,抛物线解析式为y=﹣ x(x﹣4),

由(2)可知,∠PBF=45°,则∠CFE=∠BFP=45°,C(2,2),

设P(x,0),则MP=x﹣2,PB=4﹣x,

①当∠ECF=∠BPF=90°时(如图1),△BPF与△FCE相似,

过C点作CH⊥EF,此时,△CHE、△CHF、△PBF为等腰直角三角形,

则PE=PF+FH+EH=PB+2MP=4﹣x+2(x﹣2)=x,

将E(x,x)代入抛物线y=﹣ x(x﹣4)中,得x=﹣ x(x﹣4),解得x=0或 ,即P( ,0),

②当∠CEF=∠BPF=90°时(如图2),此时,△CEF、△BPF为等腰直角三角形,

则PE=MC=2,将E(x,2)代入抛物线y=﹣ x(x﹣4)中,得2=﹣ x(x﹣4),

解得x= ,即P( ,0),

所以,P( ,0)或( ,0).


【解析】(1)根据A(0,4),B(4,0)两点坐标,可求直线AB的解析式;(2)作DG⊥y轴,垂足为G,由已知得OA=OB=4,△OAB为等腰直角三角形,而AD⊥AB,利用互余关系可知,△ADG为等腰直角三角形,则DG=AG=OG﹣OA=DM﹣OA=6﹣4=2,可求D点坐标;(3)存在.已知O(0,0),B(4,0),设抛物线的交点式,将D点坐标代入求抛物线解析式,由于对顶角∠CFE=∠BFP=45°,故当△BPF与△FCE相似时,分为:∠ECF=∠BPF=90°,∠CEF=∠BPF=90°两种情况,根据等腰直角三角形的性质求P点坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网