题目内容
【题目】如图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD'E'的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.
(1)求点D'到BC的距离;
(2)求E、E'两点的距离.
【答案】(1)点D'到BC的距离是(45+70)厘米;(2)E、E’两点的距离是30厘米。
【解析】
(1)过点D'作D'H⊥BC,垂足为点H,交AD于点F,利用矩形的性质得到∠AFD'=∠BHD'=90°,再解直角三角形即可解答
(2)连接AE、AE'、EE',得出△AEE'是等边三角形,利用勾股定理得出AE,即可解答
过点D'作D'H⊥BC,垂足为点H,交AD于点F.
由题意,得AD'=AD=90(厘米),∠DAD'=60°.
∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD'=∠BHD'=90°.
在Rt△AD'F中,D'F=AD'·sin∠DAD'=90×sin60°=(厘米).
又∵CE=40(厘米),DE=30(厘米),∴FH=DC=DE+CE=70(厘米)、
∴D'H=D'F+FH=(+70)(厘米).
答:点D'到BC的距离是(+70)厘米.
(2)连接AE、AE'、EE'.由题意,得AE'=AE,∠EAE'=60°.
∴△AEE'是等边三角形
∴EE'=AE,
∵四边形ABCD是矩形,
∴∠ADE=90°
在Rt△ADE中,AD=90(厘米),DE=30(厘米):
∴AE= (厘米)
∴EE'=(厘米).
答:E、E’两点的距离是厘米。
【题目】立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:
成绩(m) | 2.3 | 2.4 | 2.5 | 2.4 | 2.4 |
则下列关于这组数据的说法,正确的是( )
A.众数是2.3B.平均数是2.4
C.中位数是2.5D.方差是0.01
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?