题目内容
【题目】如图所示,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BF=CE.求证:AD平分∠BAC.
【答案】证明:∵BE⊥AC,CF⊥AB,
∴∠BFD=∠CED=90°,
在△BFD和△CED中
∴△BFD≌△CED(AAS),
∴DF=DE,
∵BE⊥AC,CF⊥AB,
∴AD平分∠BAC
【解析】根据垂直定义求出∠BFD=∠CED=90°,根据AAS推出△BFD≌△CED,根据全等三角形的性质推出DF=DE,根据角平分线性质求出即可.
【考点精析】根据题目的已知条件,利用角平分线的性质定理的相关知识可以得到问题的答案,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上.
练习册系列答案
相关题目