题目内容
【题目】某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55~0.75元/度之间,经测算,若电价调至x元/度,则本年度新增用电量y(亿度)与(x-0.4)成反比例.又知当x=0.65时,y=0.8.
(1)求y与x之间的函数解析式;
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]
【答案】(1) y=;(2) 当电价调至0.6元/度时,本年度电力部门的收益将比上年度增加20%.
【解析】
(1)因为本年度新增用电是y(亿度)与(x﹣0.4)成反比例关系,所以y,根据当每度电价为0.65元时,新增用电是0.8亿度可确定k的值;
(2)设当电价为x元时,本年度电力部门的收益将比上年度增加20%,根据某地上年度电价为0.8元/度,全年用电1亿度,每度电成本0.3元,可列方程求解.
(1)∵本年度新增用电是y(亿度)与(x﹣0.4)成反比例关系,∴y.
∵当每度电价为0.65元时,新增用电是0.8亿度,∴0.8,解得:k=0.2,∴y;
(2)设当电价为x元时,本年度电力部门的收益将比上年度增加20%,根据题意得:
(0.8﹣0.3)(1+20%)=(1)(x﹣0.3)
解得:x=0.6或x=0.5<0.55(舍去).
答:当电价为0.6元时,本年度电力部门的收益将比上年度增加20%.
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)
与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
【题目】24如图,P是弧AB所对弦AB上一动点,过点P作PC⊥AB交弧AB于点C,取AP中点D,连接CD.已知AB=6cm,设A,P两点间的距离为xcm,C.D两点间的距离为ycm.(当点P与点A重合时,y的值为0;当点P与点B重合时,y的值为3)
小凡根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小凡的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 0 | 2.2 |
| 3.2 | 3.4 | 3.3 | 3 |
(2)建立平面直角坐标系,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合所画出的函数图象,解决问题:当∠C=30°时,AP的长度约为 cm.