题目内容

【题目】已知:如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P从点B出发,沿BC向点C匀速运动,速度为1cm/s;过点P作PD∥AB,交AC于点D,同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动,连接PQ.设运动时间为t(s)(0<t<2.5),解答下列问题:

(1)当t为何值时,四边形ADPQ为平行四边形?
(2)设四边形ADPQ的面积为y(cm2),试确定y与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使S四边形ADPQ:SPQB=13:2?若存在,请说明理由,若存在,求出t的值,并求出此时PQ的距离.

【答案】
(1)

解:∵∠C=90°,AC=3cm,BC=4cm,

∴AB= =5cm,

∵PD∥AB,

∴当PQ∥AC时,四边形ADPQ是平行四边形,

= ,即 =

解得,t=

答:当t= 时,四边形ADPQ为平行四边形


(2)

解:过点P作PE⊥AB,垂足为E,

∵∠PEB=∠C=90°,

∠B=∠B,

∴△BPE∽△BCA,

= ,即 =

解得,PE= t,

∵PD∥AB,

∴∠DPC=∠B,

∠C=∠C,

∴△CPD∽△CBA,

= ,即 =

解得,PD=

∴y=S四边形ADPQ= ×(PD+AQ)×PE

= ×( +2t)× t

= t2+ t


(3)

解:若存在某一时刻,使S四边形ADPQ:SPQB=13:2,

则y= SPQB

∵SPQB= QB×PE=﹣ t2+ t,

t2+ t= (﹣ t2+ t),

解得,t1=0(舍去),t2=2,

则t为2s时,S四边形ADPQA:SPQB=13:2,

当t=2时,BP=2,BQ=5﹣4=1,

作QH⊥BC于H,

则QH= ,BH=

∴PH=

则PQ= =


【解析】(1)根据勾股定理求出AB,根据平行四边形的性质得到PQ∥AC,根据相似三角形的性质列出比例式,计算即可;(2)过点P作PE⊥AB,证明△BPE∽△BCA,根据相似三角形的性质求出PE、PD,根据梯形的面积公式计算即可;(3)根据题意列出一元二次方程,解方程求出t,根据相似三角形的性质、勾股定理计算即可.
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网