题目内容
【题目】若 是m+n+3的算术平方根, 是m+2n的立方根,则B-A的立方根是( )
A.1
B.-1
C.0
D.无法确定
【答案】B
【解析】解答:∵ 是m+n+3的算术平方根,∴m-n=2,∵ 是m+2n的立方根,∴m-2n+3=3.∴ 解得 ∴ , ,∴B-A=-1.
分析:根据算术平方根和立方根的定义,可知m-n=2和m-2n+3=3,从而解出m , n .
【考点精析】利用算数平方根和立方根对题目进行判断即可得到答案,需要熟知正数a的正的平方根叫做a的算术平方根;正数和零的算术平方根都只有一个,零的算术平方根是零;如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根);一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
练习册系列答案
相关题目
【题目】某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:
某校初中生阅读数学教科书情况统计图表
类别 | 人数 | 占总人数比例 |
重视 | a | 0.3 |
一般 | 57 | 0.38 |
不重视 | b | c |
说不清楚 | 9 | 0.06 |
(1)求样本容量及表格中a,b,c的值,并补全统计图;
(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;
(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;
②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?