题目内容
【题目】列方程解应用题,已知A,B两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的公路由A地匀速行驶到B地,乙每小时比甲多行30千米.甲比乙早出发3小时,乙出发1小时后刚好追上甲.
(1)求甲的速度;
(2)问乙出发之后,到达B地之前,何时甲乙两人相距6千米;
(3)若丙骑自行车与甲同时出发,沿着这条笔直的公路由B地匀速行驶到A地.经过小时与乙相遇,求此时甲、丙两人之间距离.
【答案】(1)甲的速度为每小时10千米;(2)乙出发小时或小时,甲乙两人相距6千米;(3)甲、丙两人之间距离为12千米.
【解析】
(1)设甲的速度为,根据甲行驶的路程与乙行驶的路程相等,列出方程求解即可;
(2)根据甲行驶的路程与乙行驶的路程相差6千米(分追上前和追上后两种情况讨论),列出方程求解即可;
(3)根据题意,乙行驶的时间为()小时,根据甲行驶的路程+丙行驶的路程=60,求得丙的速度,再用60-甲、丙两人的路程和,就可求得甲、丙两人之间距离.
(1)设甲的速度为,
依题意得 :
解得:
∴甲的速度为每小时10千米;
(2)设乙出发之后小时,甲乙两人相距6千米,
由(1)的结论:甲的速度为每小时10千米,乙的速度为每小时40千米;
未追上前:
依题意得 :
解得:
追上并超过后:
依题意得 :
解得:
此时:,乙未到达B地,符合题意;
∴乙出发小时或小时,甲乙两人相距6千米;
(3)丙骑自行车与甲同时出发,则乙行驶的时间为()小时,
设丙的速度为,
依题意得:
解得:
∴甲、丙两人之间距离为:
∴此时甲、丙两人之间距离为12千米.
【题目】银川九中要举办“不忘初心跟党走”2018年元旦合唱比赛,为迎接比赛,某校区七年级(3)(4)班决定订购同一套服装,两班一共有103人(三班人数多于四班),经协商,某服装店给出的价格如下:
购买人数/人 | 1~50人 | 50~100人 | 100以上人 |
每套服装价格/元 | 50 | 45 | 40 |
(1)如果两个班都以班为单位分别购买,则一共需花费4875元,那么三、四班各有多少名学生?
(2)如果两个班联合起来,做为一个整体购买,则能节省多少元钱?
(3)该服装店此次出售的服装每套成本是32元,如果按上面的第(2)问形式购买,请计算这个服装店此次出售服装的利润率是多少?