题目内容

【题目】如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).

(1)求抛物线的解析式及顶点D的坐标;

(2)判断△ABC的形状,证明你的结论;

(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.

【答案】(1), D (,);(2)△ABC是直角三角形,证明见解析;

(3)M( ,0).

【解析】(1)∵点A(-1,0)在抛物线y=x2 + bx-2上,

× (-1 )2 + b× (-1)–2 = 0,

解得b =

∴ 抛物线的解析式为y=x2-x-2.

y= ( x2 -3x- 4 ) =(x-)2-,

∴顶点D的坐标为 (, -).

(2)当x = 0时y = -2,

∴C(0,-2),OC = 2。

当y = 0时, x2-x-2 = 0,

∴x1 =-1, x2 = 4,

∴B (4,0)

∴OA = 1, OB = 4, AB = 5.

∵AB2 = 25, AC2 = OA2 + OC2 = 5, BC2 = OC2 + OB2 = 20,

∴AC2 +BC2 = AB2.

∴△ABC是直角三角形.

(3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC + MD的值最小及△DCM的周长最小

设抛物线的对称轴交x轴于点E.

∵ED∥y轴, ∴∠OC′M=∠EDM,∠C′OM=∠DEM

∴△C′OM∽△DEM.

, ∴m =

所以M的坐标为(,0)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网