题目内容

【题目】如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.

(1)求证:△AOE≌△COF;
(2)当α=30°时,求线段EF的长度.

【答案】
(1)解:∵四边形ABCD是菱形,

∴AD∥BC,AO=OC,

∴AE=CF,OE=OF,

在△AOE和△COF中,

∴△AOE≌△COF.


(2)解:当α=30°时,即∠AOE=30°,

∵四边形ABCD是菱形,∠ABC=60°,

∴∠OAD=60°,

∴∠AEO=90°,

在Rt△AOB中,

sin∠ABO= = =

∴AO=1,

在Rt△AEO中,

cos∠AOE=cos30°= =

∴OE=

∴EF=2OE=


【解析】(1)首先证明AE=CF,OE=OF,结合AO=CO,利用SSS证明△AOE≌△COF;(2)首先画出α=30°时的图形,根据菱形的性质得到EF⊥AD,解三角形即可求出OE的长,进而得到EF的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网