题目内容
【题目】已知抛物线 与x轴最多有一个交点.现有以下四个结论:① ;②该抛物线的对称轴在y轴的左侧;③关于x的方程有实数根;④ .其中正确结论的个数为( )
A. 1个B. 2个C. 3个D. 4个
【答案】A
【解析】
根据抛物线的系数与图象的关系即可求出答案.
∵抛物线 与x轴最多有一个交点.
∴△=b2-4ac≤0,即b2≤4ac,故①错误;
①∵a>b>0,
∴<1,
∴>,
∴对称轴位于y轴的左侧,故②错误;
由题意可知:对于任意的x,都有y=ax2+bx+c≥0,
∴ax2+bx+c+1≥1>0,即该方程无解,故③错误;
由于抛物线与x轴最多只有一个交点,a>0,
∴对于任意的x,y≥0,
令x=-1,
∴a-b+c≥0,故④正确
故选A.
【题目】张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:
组别 | 步数分组 | 频率 |
A | x<6000 | 0.1 |
B | 6000≤x<7000 | 0.5 |
C | 7000≤x<8000 | m |
D | x≥8000 | n |
合计 | 1 |
根据信息解答下列问题:
(1)填空:m= ,n= ;并补全条形统计图;
(2)这20名朋友一天行走步数的中位数落在 组;(填组别)
(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.
【题目】某超市为了销售一种新型“吸水拖把”,对销售情况作了调查,结果发现每月销售量y(只)与销售单价x(元)满足一次函数关系,所调查的部分数据如表:(已知每只进价为10元,销售单价为整数,每只利润=销售单价﹣进价)
销售单价x(元) | 20 | 22 | 25 | … |
月销售额y(只) | 300 | 280 | 250 | … |
(1)求出y与x之间的函数表达式
(2)该新型“吸水拖把”每月的总利润为w(元),求w关于x的函数表达式,并指出销售单价为多少元时利润最大,最大利润是多少元?
(3)由于该新型“吸水拖把”市场需求量较大,厂家又进行了改装,此时超市老板发现进价提高了m元,当每月销售量与销售单价仍满足上述一次函数关系,随着销量的增大,最大利润能减少1750元,求m的值.