题目内容
【题目】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等等.
(1)根据上面的规律,则(a+b)5的展开式= .
(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1= .
【答案】
(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
(2)1
【解析】解:(1.)∵(a+b)1=a+b, (a+b)2=a2+2ab+b2 ,
(a+b)3=a3+3a2b+3ab2+b3 ,
(a+b)4=a4+4a3b+6a2b2+4ab3+b4 ,
∴(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 ,
所以答案是:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;
(2.)25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5=15=1(根据(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5的逆运用得出的),所以答案是:1.
【考点精析】认真审题,首先需要了解完全平方公式(首平方又末平方,二倍首末在中央.和的平方加再加,先减后加差平方).
【题目】某中学去年通过“废品回收”活动筹集资金用于资助贫困山区中、小学生共27名,其中资助一名中学生的学习费用需要x元,资助一名小学生的学习费用需要y元,各年级学生筹集资金的数额及用其恰好资助中、小学生人数的部分情况如下表:
年级 | 筹集资金数额 | 资助贫困中学 | 资助贫困小学生人数(名) |
七年级 | 5000 | 2 | 5 |
八年级 | 6000 | 3 | 5 |
九年级 | 8000 |
(1)求x,y的值;
(2)九年级学生筹集的资金数解决了其余贫困中、小学生的学习费用,求出九年级学生资助的贫困中、小学生人数.