题目内容
在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,DE与BC的数量关系是 ;
![]()
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;
![]()
(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.
![]()
解:(1)DE=
BC。
(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=
BC可得到BF+BP=
DE;
(3)补全图形如图,DE、BF、BP三者之间的数量关系为BF﹣BP=
DE。
![]()
【解析】
试题分析:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°。
∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形。
∵DE⊥BC,∴DE=
BC。
(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=
BC可得到BF+BP=
DE;
BF+BP=
DE。证明如下:
∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF。
∵∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB。,∴∠CDP=∠BDF。
在△DCP和△DBF中,∵DC=DB,∠CDP=∠BDF,DP=DF,
∴△DCP≌△DBF(SAS),∴CP=BF。
∵CP=BC﹣BP,∴BF+BP=BC。
∵由(1)DE=
BC,∴BC=
DE。∴BF+BP=
DE。
(3)与(2)一样可证明△DCP≌△DBF,∴CP=BF。
∵CP=BC+BP,∴BF﹣BP=BC=
DE。
补全图形如图,DE、BF、BP三者之间的数量关系为BF﹣BP=
DE。
![]()
| A、asinA | ||
B、
| ||
| C、acosA | ||
D、
|
| A、9:4 | B、9:2 | C、3:4 | D、3:2 |