题目内容

【题目】如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(取 ,计算结果保留一位小数)

(1)求这幢大楼的高DH;
(2)求这块广告牌CD的高度.

【答案】
(1)解:在Rt△DME中,ME=AH=45米;

由tan30°= ,得DE=45× =15×1.732=25.98米;

又因为EH=MA=1.6米,因而大楼DH=DE+EH=25.98+1.6=27.58≈27.6米


(2)解:又在 Rt△CNE中,NE=45﹣14=31米,由tan45°= ,得CE=NE=31米;

因而广告牌CD=CE﹣DE=31﹣25.98≈5.0米;

答:楼高DH为27.6米,广告牌CD的高度为5.0米


【解析】(1)根据矩形的性质和解直角三角形求出这幢大楼的高DH;(2)根据特殊角的三角函数值求出CE=NE的值,得到广告牌CD=CE﹣DE的值.
【考点精析】认真审题,首先需要了解关于仰角俯角问题(仰角:视线在水平线上方的角;俯角:视线在水平线下方的角).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网