题目内容
【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为( )
A. 11 B. 10 C. 9 D. 8
【答案】D
【解析】试题分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.
∵在ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,
∴∠BAF=∠DAF,
∵AB∥DF,AD∥BC,
∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,
∴AB=BE=6,AD=DF=9,
∴△ADF是等腰三角形,△ABE是等腰三角形,
∵AD∥BC,
∴△EFC是等腰三角形,且FC=CE,
∴EC=FC=9﹣6=3,
在△ABG中,BG⊥AE,AB=6,BG=,
∴AG==2,
∴AE=2AG=4,
∴△ABE的周长等于16,
又∵△CEF∽△BEA,相似比为1:2,
∴△CEF的周长为8.
故选D.
练习册系列答案
相关题目