题目内容
【题目】如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE交AD于点M,CD交AE于N.
(1)求证:BE=DC;
(2)求证:△AMN是等边三角形;
(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.
【答案】(1)证明见详解;(2)证明见详解;(3)(1)的结论成立,(2)的结论不成立,证明见详解
【解析】
(1)根据等边三角形的性质得到AB=AD,AC=AE,∠DAB=∠EAC=60°,则∠DAC=∠BAE,根据“SAS"可判断△ABE≌△ADC,则BE= DC;
(2)由△ABE≌△ADC得到∠ABE=∠ADC,根据"AAS"可判断△ABM≌△ADN(AAS),则AM=AN;∠DAE=60°,根据等边三角形的判定方法可得到△AMN是等边三角形.
(3)判定结论1是否正确,也是通过证明△ABE≌△ADC求得,这两个三角形中AB=AD,AE=AC,∠BAE和∠CAD都是60°+∠ACB,因此两三角形就全等BE=CD,结论1正确;将△ACE绕点A按顺时针方向旋转90°,则∠DAC> 90°,因此三角形AMN绝对不可能是等边三角形.
解:(1)∵△ABD,△AEC都是等边三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,,
∴△ABE≌△ADC(SAS),
∴BE=DC;
(2)由上述(1)证得:△ABE≌△ADC,
∴∠ABM=∠ADN.
在△ABM和△ADN中, ,
∴△ABM≌△ADN(AAS),
∴AM=AN.
∵∠DAE=60°,
∴△AMN是等边三角形;
(3)∵△ABD,△AEC都是等边三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,,
∴△ABE≌△ADC(SAS),
∴BE=DC,∠ABE=∠ADC,
∵∠BAC=90°
∴∠MAN>90°,
∵∠MAN≠60°,
∴△AMN不是等边三角形,
∴(1)的结论成立,(2)的结论不成立.
【题目】随着人们生活水平的提高,家用轿车越来越多地进入家庭.王先生家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.
第一天 | 第二天 | 第三天 | 第四天 | 第五天 | 第六天 | 第七天 | |
路程(km) | ﹣8 | ﹣11 | ﹣14 | 0 | ﹣16 | +41 | +15 |
(1)王先生这七天中平均每天驾车行驶多少千米?
(2)若每行驶1km需用汽油0.1升,汽油价格为6.5元/升,则王先生家一个月(按30天计)的汽油费用是多少元?
【题目】为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随杋抽取了名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:
学生最喜爱的节目人数统计表
节目 | 人数(名) | 百分比 |
最强大脑 | 5 | 10% |
朗读者 | 15 | |
中国诗词大会 | 40% | |
出彩中国人 | 10 | 20% |
根据以上信息,回答下列问题:
(1) , ;
(2)补全上面的条形统计图;
(3)若该校共有学生名,估计该校学生最喜爱《朗读者》节目的人数.