题目内容
【题目】如图,已知在平面直角坐标系xOy中,抛物线经过原点,且与轴相交于点,点的横坐标为6,抛物线顶点为点.
(1)求这条抛物线的表达式和顶点的坐标;
(2)过点作,在直线上点取一点,使得,求点的坐标;
(3)将该抛物线向左平移个单位,所得新抛物线与轴负半轴相交于点且顶点仍然在第四象限,此时点移动到点的位置,,求的值.
【答案】(1);(2);(3).
【解析】
(1)将点O,点A坐标代入解析式可求抛物线的表达式和顶点B的坐标;
(2)由点A,点B坐标可求直线AB解析式,即可求直线OP解析式为:y=x,设点Q(3k,4k),可证四边形OQAP为等腰梯形,可得OB=QA,由两点距离公式可求k的值,即可求点Q坐标;
(3)过点B分别做作x、y轴垂线,垂足分别为点E、F,由题意可证△BCF∽△BDE,可得,可得,可得,可得关于m的方程,即可求m的值.
(1)∵点、在抛物线上
∴,解得
∴抛物线的解析式为,
∴顶点B的坐标是;
(2)如图,
∵,
∴直线AB解析式为:y=x-8,
∵
∴直线OP解析式为:y=x,
设点,
∵∠OBA=∠QAB>∠OAB,
∴k>0
∵OP平于AB,QA不平行于OB
∴四边形OQAB为梯形
又∵∠QAB=∠OBA
∴四边形OQAB为等腰梯形
∴QA=OB
∴(6-3k)2+(4k)2=25
∴或(舍去)
∴
(3)由(1)知
设抛物线向左平移个单位后的新抛物线表达式为
∵新抛物线与y轴负半轴相交于点C且顶点仍然在第四象限,设点C的坐标为C(0,c)
∴0<m<3,-4<c<0,
如图,过点B分别做作x、y轴垂线,垂足分别为点E、F
∴且
∴∽
∴
∴
∴
∴
又∵
∴
∴
∴或者(舍去)
∴
练习册系列答案
相关题目