题目内容

【题目】如图,已知直线l1∥l2 , 直线l3和直线l1 , l2交于点C和D,直线l3上有一点P.
(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;
(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试写出∠PAC,∠APB,∠PBD之间的关系,并说明理由.(图3只写结论,不写理由)

【答案】
(1)解:当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.

理由如下:

过点P作PE∥l1

∵l1∥l2

∴PE∥l2∥l1

∴∠PAC=∠1,∠PBD=∠2,

∴∠APB=∠1+∠2=∠PAC+∠PBD;


(2)解:如图2,当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.

理由如下:

∵l1∥l2

∴∠PED=∠PAC,

∵∠PED=∠PBD+∠APB,

∴∠PAC=∠PBD+∠APB.

如图3,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.

理由如下:

∵l1∥l2

∴∠PEC=∠PBD,

∵∠PEC=∠PAC+∠APB,

∴∠PBD=∠PAC+∠APB.


【解析】(1)当P点在C、D之间运动时,首先过点P作PE∥l1 , 由l1∥l2 , 可得PE∥l2∥l1 , 根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD.(2)当点P在C、D两点的外侧运动时,由直线l1∥l2 , 根据两直线平行,同位角相等与三角形外角的性质,即可求得:∠PBD=∠PAC+∠APB.
【考点精析】解答此题的关键在于理解平行线的性质的相关知识,掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网