题目内容
【题目】如图,点C在以AB为直径的⊙O上.AE与过点C的切线垂直,垂足为D,AD交⊙O于点E,过B作BF∥AE交⊙O于点F,连接CF.
(1)求证:∠B=2∠F;
(2)已知AE=8,DE=2,过B作BF∥AE交⊙O于F,连接CF,求CF的长.
【答案】(1)证明见解析;(2)CF=2.
【解析】
(1)连接OC,根据切线的性质得出OC⊥CD,即可证得OC∥AD,根据平行线的性质以及等腰三角形的性质得出∠DAB=2∠F,进而即可证得结论;
(2)连接AF、AC,延长CO交⊙O于H,过O作OG⊥AE于G,首先根据平行线的性质证得∠ACH=∠HCF然后根据垂径定理证得AH=FH,根据垂直平分线的性质得出AC=FC,进而通过证得四边形OCDG是矩形求得半径,然后根据勾股定理求得OG.得出CD,最后根据勾股定理求得AC,从而求得FC.
(1)证明:连接OC,
∵CD是⊙O的切线,
∴OC⊥CD,
∵AD⊥CD,
∴OC∥AD,
∴∠BOC=∠DAB,
由圆周角定理得,∠BOC=2∠F,
∴∠DAB=2∠F,
∵AD∥BF,
∴∠B=∠DAB,
∴∠B=2∠F;
(2)解:连接AF、AC,延长CO交⊙O于H,过O作OG⊥AE于G,
∵OC∥AD,AE∥BF,
∴OC∥BF,
∴∠F=∠HCF,
∵∠B=2∠F,
∴∠B=2∠HCF,
∵∠ACF=∠B,
∴∠ACF=2∠HCF,
∴∠ACH=∠HCF,
∴,
∴CH垂直平分AF,
∴CF=AC,
∵OG⊥AE,
∴AG=EG=4,
∴GD=GE+ED=4+2=6,
∵∠OGD=∠D=∠OCD=90°,
∴四边形OCDG是矩形,
∴OC=GD=6,OG=CD,
∵OA=OC=6,AG=4,
∴OG=
∴DC= ,
在Rt△ADC中,AC=
∴CF=AC=.
练习册系列答案
相关题目