题目内容
【题目】关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根.
【答案】
(1)解:∵方程有两个不相等的实数根,
∴(﹣3)2﹣4(﹣k)>0,
即4k>﹣9,解得
(2)解:若k是负整数,k只能为﹣1或﹣2;
如果k=﹣1,原方程为x2﹣3x+1=0,
解得, , .
(如果k=﹣2,原方程为x2﹣3x+2=0,解得,x1=1,x2=2)
【解析】(1)因为方程有两个不相等的实数根,△>0,由此可求k的取值范围;(2)在k的取值范围内,取负整数,代入方程,解方程即可.
【考点精析】通过灵活运用公式法和求根公式,掌握要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之;根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根即可以解答此题.
练习册系列答案
相关题目