题目内容

【题目】在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.

(1)若点P在线段CD上,如图1.
①依题意补全图1;
②判断AH与PH的数量关系与位置关系并加以证明;
(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)

【答案】
(1)

解:①如图1;

②解法一:如图1,连接CH,

∵四边形ABCD是正方形,QH⊥BD,

∴∠HDQ=45°,

∴△DHQ是等腰直角三角形.

∵DP=CQ,

在△HDP与△HQC中.

∴△HDP≌△HQC(SAS),

∴PH=CH,∠HPC=∠HCP.

∵BD是正方形ABCD的对称轴,

∴AH=CH,∠DAH=∠HCP,

∴∠AHP=180°﹣∠ADP=90°,

∴AH=PH,AH⊥PH.

解法二:如图1,连接CH,

∵QH⊥BD,

∴∠QHB=∠BCQ=90°,

∴B、H、C、Q四点共圆,

∴∠DHC=∠BQC,

由正方形的性质可知∠DHC=∠AHD,

由平移性质可知∠BQC=∠APD,

∴∠AHD=∠APD,

∴A、H、P、D四点共圆,

∴∠PAH=∠PDH=45°,∠AHP=∠ADP=90°,

∴△HAP是等腰直角三角形,

∴AH=PH,AH⊥PH.


(2)

解法一:如图2,

∵四边形ABCD是正方形,QH⊥BD,

∴∠HDQ=45°,

∴△DHQ是等腰直角三角形.

∵△BCQ由△ADP平移而成,

∴PD=CQ.

作HR⊥PC于点R,

∵∠AHQ=152°,

∴∠AHB=62°,

∴∠DAH=17°.

设DP=x,则DR=HR=RQ=

∵tan17°=,即tan17°=

∴x=

解法二:

由(1)②可知∠AHP=90°,

∴∠AHP=∠ADP=90°,

∴A、H、D、P四点共圆,

又∠AHQ=152°,∠BHQ=90°,

∴∠AHB=152°﹣90°=62°,

由圆的性质可知∠APD=∠AHB=62°,

在Rt△APD中,∠PAD=90°﹣62°=28°,

∴PD=ADtan28°=tan28°.


【解析】(1)①根据题意画出图形即可;
②连接CH,先根据正方形的性质得出△DHQ是等腰直角三角形,再由SAS定理得出△HDP≌△HQC,故PH=CH,∠HPC=∠HCP,由正方形的性质即可得出结论;
(2)根据四边形ABCD是正方形,QH⊥BD可知△DHQ是等腰直角三角形,再由平移的性质得出PD=CQ.作HR⊥PC于点R,由∠AHQ=152°,可得出∠AHB及∠DAH的度数,设DP=x,则DR=HR=RQ,由锐角三角函数的定义即可得出结论.
【考点精析】利用平行四边形的判定与性质对题目进行判断即可得到答案,需要熟知若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网