题目内容
【题目】阅读下列材料,并回答问题. 事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:
(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为 .
(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.
(3)如图2,点A在数轴上表示的数是 ,请用类似的方法在图2数轴上画出表示数的B点(保留作图痕迹).
【答案】(1)10;(2)BD= 2;(3)﹣.
【解析】整体分析:
(1)用勾股定理求斜边的长;(2)在Rt△ADC中用勾股定理求AD的长,由BD=AD求解;(3)用勾股定理解题.
解:(1)直角三角形的两条直角边分别为6、8,
则这个直角三角形斜边长==10,
故答案为:10;
(2)在Rt△ADC中,AD==2,
∴BD=AD=2;
(3)点A在数轴上表示的数是:﹣=﹣,
由勾股定理得,OC=,
以O为圆心、OC为半径作弧交x轴于B,则点B即为所求,
故答案为﹣.
【题目】全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务.某地区沙漠原有面积是100万平方千米,为了解该地区沙漠面积的变化情况,进行了连续3年的观察,并将每年年底的观察结果记录如下表:
观察时间 | 该地区沙漠面积(万平方千米) |
第一年年底 | 100.2 |
第二年年底 | 100.4 |
第三年年底 | 100.6 |
预计该地区沙漠的面积将继续按此趋势扩大.
(1)如果不采取措施,那么到第m年年底,该地区沙漠面积将变为多少万平方千米?
(2)如果第5年后采取措施,每年改造0.8万平方千米沙漠(沙漠面积的扩大趋势不变),那么到第n年(n>5)年年底该地区沙漠的面积为多少万平方千米?
(3)在(2)的条件下,第90年年底,该地区沙漠面积占原有沙漠面积的多少?
【题目】如图是一个在平面直角坐标系中从原点开始的回形图,其中回形通道的宽和OA的长都是1.
(1)观察图形填写表格:
点 | 坐标 | 所在象限或坐标轴 |
A | ||
B | ||
C | ||
D | ||
E | ||
F |
(2)在图上将回形图继续画下去(至少再画出4个拐点);
(3)说出回形图中位于第一象限的拐点的横坐标与纵坐标之间的关系;
(4)观察图形,说出(3)中的关系在第三象限中是否存在?