题目内容
【题目】如图,直线AB和直线BC相交于点B,连接AC,点D. E. H分别在AB、AC、BC上,连接DE、DH,F是DH上一点,已知∠1+∠3=180°,
(1)求证:∠CEF=∠EAD;
(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).
【答案】(1)证明见解析;(2)90+ α.
【解析】
(1)根据平行线的判定和性质解答即可;
(2)根据平行线的性质解答即可.
(1)∵∠3+∠DFE=180°,∠1+∠3=180°,
∴∠DFE=∠1,
∴AB∥EF,
∴∠CEF=∠EAD;
(2)∵AB∥EF,
∴∠2+∠BDE=180°
又∵∠2=α
∴∠BDE=180°α
又∵DH平分∠BDE
∴∠1=∠BDE= (180°α)
∴∠3=180° (180°α)=90+ α
练习册系列答案
相关题目
【题目】根据下表回答问题:
x | 16 | 16.1 | 16.2 | 16.3 | 16.4 | 16.5 | 16.6 | 16.7 | 16.8 |
x2 | 256 | 259.21 | 262.44 | 265.69 | 268.96 | 272.25 | 175.56 | 278.89 | 282.24 |
(1)272.25的平方根是
(2) = , = , =
(3)设 的整数部分为a,求﹣4a的立方根.