题目内容
【题目】如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为( )
A.8
B.9
C.10
D.11
【答案】C
【解析】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,
在△ABC和△CED中,
,
∴△ACB≌△DCE(AAS),
∴AB=CE,BC=DE;
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
即Sb=Sa+Sc=1+9=10,
∴b的面积为10,
故答案为:C.
由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;根据正方形的性质及同角的余角相等得出∠BAC=∠DCE,然后利用AAS判断出△ACB≌△DCE,根据全等三角形对应边相等得出AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb=Sa+Sc=1+9=10。
练习册系列答案
相关题目
【题目】某超市超市准备购进A、B两种品牌的书包共100个,已知两种书包的进价如下表所示,设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为y元.
品牌 | 购买个数(个) | 进价(元/个) | 售价(元/个) | 获利(元) |
A | x | 50 | 60 | __________ |
B | __________ | 40 | 55 | __________ |
(1)将表格的信息填写完整;
(2)求y关于x的函数表达式;
(3)如果购进两种书包的总费用不超过4500元且购进B种书包的数量不大于A种书包的3倍,那么超市如何进货才能获利最大?并求出最大利润.