题目内容
【题目】A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.
(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x= ,y= ,并请在数轴上标出A、B两点的位置.
(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z= .
(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t= .
【答案】(1)x= 4 ,y= 1;(2)或;(3)或
【解析】试题分析:(1)先根据|a+8|+(b-2)2=0求出a、b的值,再用距离÷时间=速度,可求出x、y的值;
(2)先根据题意表示出向正方向运动z秒后a、b所表示的数,再列方程可求得z;
(3)分别表示出AC、BC、AB,再根据AC+BC=1.5AB列出方程,解方程可得t的值.
试题解析:(1)∵|a+8|+(b﹣2)2=0,
∴a+8=0,b﹣2=0,即a=﹣8,b=2,
则x=|﹣8|÷2=4,y=2÷2=1
(2)动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后
a=﹣8+4z,b=2+z,
∵|a|=|b|,
∴|﹣8+4z|=2+z,
解得或;
(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒后
点A表示:﹣8+2t,点B表示:2+2t,点C表示:8,
∴AC=|﹣8+2t﹣8|=|2t﹣16|,BC=|2+2t﹣8|=|2t﹣6|,AB=|﹣8+2t﹣(2+2t)|=10,
∵AC+BC=1.5AB
∴|2t﹣16|+|2t﹣6|=1.5×10,
解得或.