题目内容

【题目】现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的一元二次方程x2﹣2x+a﹣2=0有实数根,且关于x的分式方程+2=有解的概率为

【答案】

【解析】

试题分析:先由一元二次方程x2﹣2x+a﹣2=0有实数根,得出a的取值范围,求出分式方程的解为:x=,然后根据分式方程+2=有解,得到:2﹣a≠0且x≠2,求得:a≠2且a≠1,然后根据统计使分式方程有解情况数,最后根据概率公式进行计算即可.

解:一元二次方程x2﹣2x+a﹣2=0有实数根,

4﹣4(a﹣2)≥0,

a≤3

a=﹣1,0,1,2,3.

关于x的分式方程+2=的解为:x=

且2﹣a≠0且x≠2,

解得:a≠2且a≠1,

a=﹣1,0,3,

使得关于x的一元二次方程x2﹣2x+a﹣2=0有实数根,且关于x的分式方程+2=有解的概率为:

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网