题目内容

如图,△ABC是等边三角形,BD是中线,P是直线BC上一点.(1) 若CP=CD,求证:△DBP是等腰三角形;(2) 在图①中建立以△ABC的边BC的中点为原点,BC所在直线为x轴,BC边上的高所在直线为y轴的平面直角坐标系,如图②,已知等边△ABC的边长为2,AO=,在x轴上是否存在除点P以外的点Q,使△BDQ是等腰三角形?如果存在,请求出Q点的坐标;如果不存在,请说明理由.
.证明:∵△ABC是等边三角形 ∴∠ABC=∠ACB=60° ∵BD是中线 ∴∠DBC=30°
∵CP="CD " ∴∠CPD=∠CDP 又∵∠ACB=60° ∴∠CPD=30°∴∠CPD=∠DBC
∴DB=DP即△DBP是等腰三角形.
(2) 解:在x轴上存在除点P以外的点Q,使△BDQ是等腰三角形
①若点P在x轴负半轴上,且BP="BD " ∵BD= ∴BP=
∴OP=  ∴点P1,0)②若点P在x轴上,且BP=PD
∵∠PBD=∠PDB=30° ∴∠DPC=60°又∠PCD=60°∴PC=DC=1
而OC="1 " ∴OP="0 " ∴点P2(0,0)
③若点P在x轴正半轴上,且BP="BD  " ∴BP=   而OB=1
∴OP=   ∴点P3,0)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网