题目内容

(2011•潍坊)如图,AB是半径O的直径,AB=2.射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.
(1)求证:△ABC∽△OFB;
(2)当△ABD与△BFO的面枳相等时,求BQ的长;
(3)求证:当D在AM上移动时(A点除外),点Q始终是线段BF的中点.



证明:(1)∵AB为直径,
∴∠ACB=90°,即:AC⊥BC,
又OE⊥BC,
∴OE∥AC,
∴∠BAC=∠FOB,
∵BN是半圆的切线,
∴∠BCA=∠FBO=90°,
∴△ACB∽△OBF.
解:(2)由△ACB∽△OBF得,∠OFB=∠DBA,∠DAB=∠OBF=90°,
∴△ABD∽△BFO,
当△ABD与△BFO的面积相等时,△ABD≌△BFO,
∴AD=1,
又DPQ是半圆O的切线,
∴OP=1,且OP⊥DP,
∴DQ∥AB,
∴BQ=AD=1
(3)由(2)知,△ABD∽△BFO,
=
∴BF=
∵DPQ是半圆O的切线,
∴AD=DP,QB=BQ,
过Q点作AM的垂线QK,垂足为K,在直角三角形DQK中,
DQ2=QK2+DK2
∴(AD+BQ)2=(AD﹣BQ)2+22
∴BQ=
∴BF=2BQ,
∴Q为BF的中点.

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网