题目内容

【题目】阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理——“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点DBC的中点,根据“中线长定理”,可得:

AB2AC2=2AD2+2BD2

小明尝试对它进行证明,部分过程如下:

解:过点AAEBC于点E,如图2,在Rt△ABE中,AB2AE2BE2

同理可得:AC2AE2CE2AD2AE2DE2

为证明的方便,不妨设BDCDxDEy

AB2AC2AE2BE2AE2CE2=……

(1)请你完成小明剩余的证明过程;

理解运用:

(2) ① 在△ABC中,点DBC的中点,AB=6,AC=4,BC=8,则AD=_______;

② 如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC=90°,点EF分别为AOBC的中点,则EF的长为________;

拓展延伸:

(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A(3,4)为直角顶点的△ABC的另两个顶点BC都在⊙O上,DBC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.

【答案】(1)证明见解析;(2)①;②4;(3)10

【解析】试题分析:(1

=

2根据中线长定理即可求解;

3根据中线长定理即可求解.

试题解析:1

=

24

3)由(2)的②可知:DE

ADE中,AE DE

AD长的最大值为10

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网