题目内容
(2013•深圳)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.
分析:(1)由AD∥BC,CE=AD,可得四边形ACED是平行四边形,即可证得AC=DE,又由等腰梯形的性质,可得AC=BD,即可证得结论;
(2)首先过点D作DF⊥BC于点F,可证得△BDE是等腰直角三角形,由SABCD=16,可求得BD的长,继而求得答案.
(2)首先过点D作DF⊥BC于点F,可证得△BDE是等腰直角三角形,由SABCD=16,可求得BD的长,继而求得答案.
解答:(1)证明:∵AD∥BC,CE=AD,
∴四边形ACED是平行四边形,
∴AC=DE,
∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,
∴AC=BD,
∴BD=DE.
(2)解:过点D作DF⊥BC于点F,
∵四边形ACED是平行四边形,
∴CE=AD=3,AC∥DE,
∵AC⊥BD,
∴BD⊥DE,
∵BD=DE,
∴S△BDE=
BD•DE=
BD2=
BE•DF=
(BC+CE)•DF=
(BC+AD)•DF=S梯形ABCD=16,
∴BD=4
,
∴BE=
BD=8,
∴DF=BF=EF=
BE=4,
∴CF=EF-CE=1,
∴AB=CD=
=
.
∴四边形ACED是平行四边形,
∴AC=DE,
∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,
∴AC=BD,
∴BD=DE.
(2)解:过点D作DF⊥BC于点F,
∵四边形ACED是平行四边形,
∴CE=AD=3,AC∥DE,
∵AC⊥BD,
∴BD⊥DE,
∵BD=DE,
∴S△BDE=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴BD=4
2 |
∴BE=
2 |
∴DF=BF=EF=
1 |
2 |
∴CF=EF-CE=1,
∴AB=CD=
CF2+DF2 |
17 |
点评:此题考查了等腰三角形的性质、等腰直角三角形的性质与判定、平行四边形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目