题目内容

【题目】如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.

(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?

【答案】
(1)证明:∵点D、E分别是边BC、AC的中点,

∴DE∥AB,

∵AF∥BC,

∴四边形ABDF是平行四边形,

∴AF=BD,则AF=DC,

∵AF∥BC,

∴四边形ADCF是平行四边形


(2)证明:当△ABC是直角三角形时,四边形ADCF是菱形,

理由:∵点D是边BC的中点,△ABC是直角三角形,

∴AD=DC,

∴平行四边形ADCF是菱形


【解析】(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;(2)利用直角三角形的性质结合菱形的判定方法得出即可.
【考点精析】根据题目的已知条件,利用平行四边形的判定和菱形的判定方法的相关知识可以得到问题的答案,需要掌握两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网