题目内容
【题目】如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为_____.
【答案】(,)
【解析】分析:根据翻折变换的性质和矩形的性质可得∠DAM=30°,AC=OB=AD=3,,结合锐角三角函数关系得出线段AN和DM的长,进而得出D点坐标.
详解:∵四边形AOBC是矩形,∠ABO=30°,点B的坐标为(0,3),
∴AC=OB=3,∠CAB=30°,
∴BC=ACtan30°=3×=3,
∵将△ABC沿AB所在直线对折后,点C落在点D处,
∴∠BAD=30°,AD=3,
过点D作DM⊥x轴于点M,
∵∠CAB=∠BAD=30°,
∴∠DAM=30°,
∴DM=AD=,
∴AM=3×cos30°=,
∴MO=-3=,
∴点D的坐标为(,).
故答案为:(,).
练习册系列答案
相关题目
【题目】某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中五次行驶纪录如下。(单位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
-4 | +7 | -9 | +7 | -2 |
(1)求第二次记录时距A地多远?
(2)在第______次纪录时距A地最远。
(3)若每千米耗油0.8升,问共耗油多少升?